:orphan: .. **************************************************************************** .. CUI .. .. The Advanced Framework for Simulation, Integration, and Modeling (AFSIM) .. .. The use, dissemination or disclosure of data in this file is subject to .. limitation or restriction. See accompanying README and LICENSE for details. .. **************************************************************************** Integration of Planck's Law of Black Body Radiation Over an Interval ==================================================================== Reference ========= Integration of the Planck blackbody radiation function, W. K. Widger, Jr. and M. P. Woodall, Bulletin American Meteorological Society, Vol. 57, No. 10, Oct 1976, pp. 1217-1219 The above reference describes a mechanism for integration of Planck's law of black body radiation over a band of wavelengths without resorting to numerical methods that require a large number of iterations. The derivation is repeated here as an exercise. Planck's Law of Black Body Radiation ==================================== Planck's law of black body radiation states: .. math:: B(T,\lambda) = \frac{2hc^2}{\lambda^5} \frac{1}{e^{\frac{hc}{kT\lambda}} - 1} Or in terms of the radiation constants: .. math:: B(T,\lambda) = \frac{c_{1L}}{\lambda^5} \frac{1}{e^{\frac{c_2}{T\lambda}}-1} \text{ (units: } \frac{W}{m^2 \cdot sr \cdot m} \text{)} Where the radiations constants are defined as: .. math:: c_{1L} = 2hc^2 \text{ and } c_2 = \frac{hc}{k} This may be integrated to determine the radiance over a band of wavelengths: .. math:: B_b (T) = \int_{\lambda_1}^{\lambda_2}B(T,\lambda)d\lambda \text{ (units:} \frac{W}{m^2 \cdot sr} \text{)} For a discrete spectral band, this may be replaced by: .. math:: B_b (T) = \int_{\lambda_1}^{\lambda_2}B(T,\lambda)d\lambda = \int_{\lambda_1}^{\infty}B(T,\lambda)d\lambda - \int_{\lambda_2}^{\infty}B(T,\lambda)d\lambda Assume a substitution of variables: .. math:: x = \frac{hc}{kT\lambda} \text{ or } \lambda = \frac{hc}{kTx} .. math:: dx = -\frac{hc}{kT\lambda^2} d\lambda \text{ or } d\lambda = -\frac{kT\lambda^2}{hc} dx = -\frac{kT}{hc} \frac{h^2 c^2}{k^2 T^2 x^2} dx = -\frac{hc}{kTx^2}dx Performing the substitution (ignoring the limits for now): .. math:: \int \frac{2hc^2}{\lambda^5} \frac{1}{e^{\frac{hc}{kT\lambda}}-1} d\lambda = \int -2hc^2 \frac{k^5 T^5 x^5}{h^5 c^5} \frac{1}{e^x-1} \frac{hc}{kTx^2}dx Now for some algebraic manipulation: .. math:: &=\int -2hc^2 \frac{k^5 T^5 x^5}{h^5 c^5} \frac{hc}{kTx^2} \frac{1}{e^x-1} dx \\ &= -2hc^2 \frac{k^4 T^4}{h^4 c^4} \int x^3 \frac{1}{e^x-1}dx \\ &= -\frac{c_{1L}}{c_2^4} T^4 \int x^3 \frac{1}{e^x-1} dx Multiple top and bottom by :math:`e^{-x}`: .. math:: = -\frac{c_{1L}}{c_2^4} T^4 \int x^3 \frac{e^{-x}}{1-e^{-x}} dx The series expansion: .. math:: (1 \pm z)^{-n} = 1 \mp nz + \frac{n(n+1) z^2}{2!} \mp \frac{n(n+1)(n+2) z^3}{3!} + \ldots (z^2 < 1) If we let :math:`z=e^{-x}` and :math:`n=1`: .. math:: \frac{1}{1-e^{-x}} = (1-e^{-x})^{-1} = 1 + e^{-x} + e^{-2x} + e^{-3x} + \ldots Note that :math:`x` is always greater than zero because all of the factors that define it are positive. As a result, :math:`[0